
CBOP3203

 OBJECT-ORIENTATION is a set of tools and
methods that enable software engineers to
build reliable, user friendly, maintainable,
well documented, reusable software systems
that fulfills the requirements of its users.

 An object-oriented programming language
provides support for the following object
oriented concepts:
◦ Objects and Classes
◦ Inheritance
◦ Polymorphism and Dynamic binding

 It allows reusability of codes

 Programs are easy to maintain

 Programs are more flexible and expandable

 All objects are unique.

 Examples of objects:
◦ people, animals, plants, cars, planes, buildings,

computers and so on

 What is the difference between a class and
primitive data type?

 A class is a blueprint that defines the
variables (or attributes) and the methods
common to all objects of a certain kind.

 Object is an instance of class.

 Objects can be defined as things that has:
◦ State

◦ Behavior

◦ Identity

 Sate – represented by attributes:
◦ Example: money in an ATM machine, name, birth date

 Behavior –methods are used to define behavior:
◦ Example: release money from ATM machine

 Identity – name of the object:
◦ StudentA, StudentB, StudentC and etc

public class Vehicle {
private double maxLoad;

public void setMaxLoad(double value) {
maxLoad = value;

}

}

Class Name

Attribute

Operation /method
declaration

 Class_Name Object_Name = new Constructor_Name();

Vehicle myVehicle = new Vehicle();

Vehicle objVehicle;

objVehicle = new Vehicle();

 A constructor is a set of instructions designed
to initialize an instance. Parameters can be
passed to the constructor in the same way as
for a method. The declaration takes the
following form:

<modifier> <class_name>
([<parameter_list>]) {

[<statements>]

}

public class Dog {
private int weight;

public Dog() {
weight = 42;

}
public int getWeight() {

return weight;
}
public void setWeight (int newWeight) {

weight = newWeight;
}

}

 The ―dot‖ notation: <object>.<member>;

 This is used to access object members including
attributes and methods

 Example:
◦ d.setWeight(42);

◦ d.weight = 42; //only permissible if weight is public

public class Dog {

private int weight;

public Dog() {
weight = 42;

}

public Dog(int initialWeight) {
weight = initialWeight;

}

}

15

 Account.java

 1 // Fig. 3.13: Account.java

 2 // Account class with a constructor to

 3 // initialize instance variable balance.

 4

 5 public class Account

 6 {

 7 private double balance; // instance variable that stores the balance

 8

 9 // constructor

10 public Account(double initialBalance)

11 {

12 // validate that initialBalance is greater than 0.0;

13 // if it is not, balance is initialized to the default value 0.0

14 if (initialBalance > 0.0)

15 balance = initialBalance;

16 } // end Account constructor

17

18 // credit (add) an amount to the account

19 public void credit(double amount)

20 {

21 balance = balance + amount; // add amount to balance

22 } // end method credit

23

24 // return the account balance

25 public double getBalance()

26 {

27 return balance; // gives the value of balance to the calling method

28 } // end method getBalance

29

30 } // end class Account

double variable balance

16

AccountTest.java

 1 // Fig. 3.14: AccountTest.java

 2 // Create and manipulate an Account object.

 3 import java.util.Scanner;

 4

 5 public class AccountTest

 6 {

 7 // main method begins execution of Java application

 8 public static void main(String args[])

 9 {

10 Account account1 = new Account(50.00); // create Account object

11 Account account2 = new Account(-7.53); // create Account object

12

13 // display initial balance of each object

14 System.out.printf("account1 balance: $%.2f\n",

15 account1.getBalance());

16 System.out.printf("account2 balance: $%.2f\n\n",

17 account2.getBalance());

18

17

AccountTest.java

19 // create Scanner to obtain input from command window

20 Scanner input = new Scanner(System.in);

21 double depositAmount; // deposit amount read from user

22

23 System.out.print("Enter deposit amount for account1: "); // prompt

24 depositAmount = input.nextDouble(); // obtain user input

25 System.out.printf("\nadding %.2f to account1 balance\n\n",

26 depositAmount);

27 account1.credit(depositAmount); // add to account1 balance

28

29 // display balances

30 System.out.printf("account1 balance: $%.2f\n",

31 account1.getBalance());

32 System.out.printf("account2 balance: $%.2f\n\n",

33 account2.getBalance());

34

35 System.out.print("Enter deposit amount for account2: "); // prompt

36 depositAmount = input.nextDouble(); // obtain user input

37 System.out.printf("\nadding %.2f to account2 balance\n\n",

38 depositAmount);

39 account2.credit(depositAmount); // add to account2 balance

40

Input a double value

Input a double value

18

AccountTest.java

41 // display balances

42 System.out.printf("account1 balance: $%.2f\n",

43 account1.getBalance());

44 System.out.printf("account2 balance: $%.2f\n",

45 account2.getBalance());

46 } // end main

47

48 } // end class AccountTest

account1 balance: $50.00
account2 balance: $0.00

Enter deposit amount for account1: 25.53

adding 25.53 to account1 balance

account1 balance: $75.53
account2 balance: $0.00

Enter deposit amount for account2: 123.45

adding 123.45 to account2 balance

account1 balance: $75.53
account2 balance: $123.45

Output a double value

Q1. Modify class Account (in the example) to
provide a method called debit that withdraws
money from an Account. Ensure that the debit
amount does not exceed the Account’s balance.
If it does, the balance should be left unchanged
and the method should print a message
indicating ―Debit amount exceeded account
balance.‖ Modify class AccountTest (in the
example) to test method debit.

Q2. Create a class called Invoice that a hardware store
might use to represent an invoice for an item sold at the
store. An Invoice should include four pieces of
information as instance variables - a part number (type
String), a part description (type String), a quantity of the
item being purchased (type int) and a price per item
(double). Your class should have a constructor that
initializes the four instance variables. Provide a set and a
get method for each instance variable. In addition,
provide a method named getInvoiceAmount that
calculates the invoice amount (i.e., multiplies the
quantity by the price per item), then returns the amount
as a double value. If the quantity is not positive, it
should be set to 0. If the price per item is not positive, it
should be set to 0.0. Write a test application named
InvoiceTest that demonstrates class Invoice’s
capabilities.

Q3. Create a class called Employee that includes
three pieces of information as instance
variables—a first name (type String), a last name
(type String) and a monthly salary (double). Your
class should have a constructor that initializes
the three instance variables. Provide a set and a
get method for each instance variable. If the
monthly salary is not positive, set it to 0.0. Write
a test application named EmployeeTest that
demonstrates class Employee’s capabilities.
Create two Employee objects and display each
object’s yearly salary. Then give each Employee a
10% raise and display each Employee’s yearly
salary again.

Q4. Create a class called Date that includes three
pieces of information as instance variables—a
month (type int), a day (type int) and a year (type
int). Your class should have a constructor that
initializes the three instance variables and
assumes that the values provided are correct.
Provide a set and a get method for each instance
variable. Provide a method displayDate that
displays the month, day and year separated by
forward slashes (/). Write a test application
named DateTest that demonstrates class Date’s
capabilities.

